Constructing a Street Level View of the Common Core State Standards: A Map for How All Students Learn Mathematics

The Dynamic Learning Maps project is guided by the core belief that all students should have access to challenging grade-level content.

National Council of Supervisors of Mathematics Annual Meeting

Kelli Thomas, Ph.D.
Alan Sheinker, Ed.D
Angela Broaddus, Ph.D.
Perneet Sood, M.S.
State Participants
Key features of the DLM

- Learning maps
- Instructionally relevant item types
- Instructionally embedded assessments
- Technology platform
- Dynamic assessment
The DLM Alternate Assessment System*

English Language Arts and Mathematics, Grades 3–8 and High School

EMBEDDED TASKS ASSESSMENTS

A series of more than 100 items/tasks per year embedded within instruction, each with various forms and scaffolds to allow for customization to student needs. Each task typically requires one to five minutes for completion.

DIGITAL LIBRARY of learning maps; professional development resources; guidelines for IEP development and student selection for the alternate assessment; instructionally relevant tasks with guidelines for use materials, accommodations, and scaffolding; automated scoring (for most) and diagnostic feedback; and online reporting system.

END-OF-YEAR ADAPTIVE ASSESSMENT

Two options for summative assessment**

- Instructionally embedded tasks used with all DLM students. States may choose to use aggregate data for summative purposes (state decision).*
- Summative assessment for accountability for those states that choose not to use the embedded tasks for accountability.

* Alternate assessment systems are those developed for students with the most significant cognitive disabilities and are based on alternate achievement standards.

** Research will be conducted to review the technical feasibility of using data from the tasks for summative accountability purposes.
Learning Map Development
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Solving</td>
<td>Conceptual Understanding</td>
<td>Make sense & persevere</td>
</tr>
<tr>
<td>Reasoning & Proof</td>
<td>Procedural Fluency</td>
<td>Reason abstractly & quantitatively</td>
</tr>
<tr>
<td>Communication</td>
<td>Strategic Competence</td>
<td>Construct viable arguments & critique reasoning</td>
</tr>
<tr>
<td>Representation</td>
<td>Adaptive Reasoning</td>
<td>Model with mathematics</td>
</tr>
<tr>
<td>Connections</td>
<td>Productive Disposition</td>
<td>Use appropriate tools strategically</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attend to precision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Look for & make use of structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Look for & express regularity in repeated reasoning</td>
</tr>
</tbody>
</table>
Understanding Mathematics

• Representations allow people to perceive of abstract mathematics concepts in different ways, which when cognitively organized and connected, support understanding (NCTM, 2000).
Fostering Mathematical Understanding

• Educational experiences should foster connections (NCTM, 1989, 2000).
 – New information connected to prior knowledge
 – Interconnections among major domains
 – Connections among mathematical concepts and skills

• Procedural skill does not constitute understanding (Hiebert et al., 1996).
Three Phases for Mastering Basic Number Computations

(Baroody, 2006)

1.OA.5 - Relate counting to addition and subtraction

1.OA.6 - Add and subtract within 20, demonstrating fluency for addition and subtraction within 10...

Counting strategies

Using object counting or verbal counting to determine an answer

Reasoning strategies

Using known information to logically determine the

Mastery

Efficient (fast and accurate) production of answers

2.OA.1 - Use addition and subtraction within 100 to solve one- and two-step word problems...

2.NBT.5 - Fluently add and subtract within 100 using strategies...
Counting strategies

Using object counting or verbal counting to determine an answer

Reasoning strategies

Using known information to logically determine the

Efficient (fast and accurate) production of answers

Baroody, 2006
Node Creation Informed by...

- **Start with the Common Core State Standard...**
 - **Cognitive development** (Does this standard require that the student has undergone developmental growth?)
 - **Curricular** (Does it represent new learning goals within the scope and sequence of a domain?)
 - **Instruction** (Does the standard’s acquisition require instructional scaffolds or particular instructional strategies?)
- To achieve....
 - Concepts
 - Skills
 - Schema/Representation
What other concepts and skills are related to the nodes in the progression provided to your table?

- Create nodes to represent precursor or intermediate concepts and skills.

- Draw relevant connections between the nodes.

Draw upon your experiences working with teachers and students, knowledge of curricular materials, and your own mathematical understanding.
Discussion

• What differences did you notice between your draft and the draft DLM?

• What did you learn?
Discussion

• How could this information benefit teaching and learning?
 – Mathematics Knowledge for Teaching
 – Instructional practice
 – Data-based decision making

• What professional development activities will foster appropriate instructional use of the DLM?
Project Next Steps

Multiple Map Review (next one is special education-alternate pathways)

Working with experts to help us propose alternate pathways.
Keeping up with the project

www.dynamiclearningmaps.org